

© Copyright IBM Corporation, 2022

Exploring the IBM OmniFind
Text Search Server

Performing high-speed linguistic text searches against
Db2 text data and documents stored in rich-text formats

Kent Milligan
IBM Lab Services Power Systems Delivery Practice

January 2022

Exploring the IBM OmniFind Text Search Server

Table of contents
Abstract .. 1

Introduction ... 1

IBM OmniFind for Db2 for i... 1
Sample search capabilities .. 2

Database requirements ... 3

Configuring OmniFind .. 5

Understanding text indexes ... 5

Creating a text index .. 7

Populating a text index... 10

Maintaining a text index ... 10

Index maintenance performance ... 12

Dropping a text index ... 13

Indexing external data.. 14

Graphical management interface ... 15

OmniFind search capabilities .. 16
CONTAINS function ... 16

Search argument options .. 17

SCORE function ... 18

Search argument syntax .. 19

Logical operator syntax ... 19

Search-argument syntax ... 19

Searching through XML ... 20

Numeric comparisons .. 24

Date and DateTime comparisons .. 24

Namespace considerations ... 25

Additional XML search considerations .. 26

Searching with synonyms .. 27

Searching external object collection .. 30

Summary .. 31

Resources .. 32

About the author ... 32

Trademarks and special notices .. 33

Exploring the IBM OmniFind Text Search Server

1

Abstract
This paper explores the newest IBM Db2 for i indexing technology — the IBM OmniFind Text
Search Server. This paper introduces you to the OmniFind text-indexing technology and how it
compares with traditional database index technologies. In addition, the paper discusses how
applications that are developed in any language can use SQL to perform text searches against
simple text data stored in Db2 databases, business data encapsulated in XML documents, and
data stored in rich-text document formats such as Adobe PDF or Microsoft Word.

Introduction
Many databases contain long-character columns that have free-form description and memo fields with

notes describing a customer or product. Obviously, these free-form character fields might contain data

that provide valuable business insights — assuming that a business analyst can quickly find and locate

the data. Standard database search predicates and indexing technologies are not optimal when finding

text strings in the middle of a paragraph. These standard technologies perform byte-by-byte comparisons

to find an exact match of the specified search string. This type of approach does not work or perform well

when the specified search string is the next-to-last word in a 1000-byte character column.

Standard database technologies also provide no value when customer or product data is stored in XML or

rich-text documents that have been created with tools such as Microsoft® Word or Adobe Acrobat. With

the proliferation of computing devices and word-processing software, there is a very good chance that

data stored in rich-text documents can help your company.

The challenges associated with searching and analyzing text data are why most database products now

offer full text-search solutions — thus, delivering high-speed, advanced text-search capabilities by looking

at text columns and documents as a series of words, instead of a sequence of characters.

This paper describes how IBM® OmniFind® Text Search Server can enable your applications to perform

advanced, high-speed linguistic searches against text data that is stored in either simple IBM Db2®

character columns or rich-text document formats.

IBM OmniFind for Db2 for i
OmniFind Text Search Server for Db2 for i delivers the common Db2 Family text-search technology to the

IBM i developer community. It requires a minimum operating-system release level of IBM i 6.1. OmniFind

also replaces the Db2 Text Extender product that is available on previous IBM i releases. Unlike its

predecessor product, OmniFind is a no-charge product. Currently, the product must be ordered and

installed separately. The OmniFind Text Search Server product identification number is 5733-OMF.

OmniFind provides interfaces and indexing technology that let applications perform high-speed linguistic

text searches against character data. The OmniFind technology is not limited to text data stored in simple

character columns. It also supports text stored in rich-text document formats such as Microsoft Word,

Open Office and Adobe Acrobat, as well as data stored in XML and HTML files. Further, these rich-text

documents do not have to be stored in a Db2 table. OmniFind can index and search rich-text documents

stored in a Db2 LOB (large object) column or outside of Db2 in the IBM i integrated file system (IFS).

In addition, the OmniFind product supports a wide range of languages (26 languages, including double-

byte languages such as Chinese, Japanese, and Korean).

Exploring the IBM OmniFind Text Search Server

2

Sample search capabilities

Before getting into setup and usage details for OmniFind, here are a few examples to show its powerful

search capabilities. The first thing to notice is that both examples use SQL. Interaction with OmniFind

Text Search Server is accomplished with the SQL CONTAINS and SCORE scalar functions.

The first example uses the CONTAINS function to search the contents of a Db2 column named story. The

story column is defined with BLOB column data type and Microsoft Word documents are stored within this

BLOB column. The application directs the CONTAINS function to find all the stories that contain the

words 'mice chasing cats'. The AND logical operator is the default operator between the search keywords.

Thus, this example search specifies that a match should only be returned when the target text contains all

three words ('mice' AND 'chasing' AND 'cats'). When a match is found by the CONTAINS function, the

function returns a value of 1 — this explains why the selection predicate compares the value of the

CONTAINS function to 1.

SELECT author_name, title FROM books
 WHERE CONTAINS(story, 'mice chasing cats') = 1
 AND pubdate >= '1/1/2005'

Example 1: OmniFind search with CONTAINS

The CONTAINS function call in this example not only returns matches on the three search arguments of

'mice chasing cats', but also returns matches on variations of these search words. For instance, the

CONTAINS function returns a match if the story text includes the following sentence:

Melvin the mouse chased Charlie the cat.

The sentence contains 'mouse', 'chased' and 'cat', which are all variations of words in the original search

argument. This is a good example of the OmniFind advanced linguistic-search capabilities that are not

possible with standard database technologies. Remember, traditional database technologies are usually

designed to only find an exact match. This exact match difference also arises with the case-insensitive

searches that OmniFind performs by default. Case-insensitivity means that the sample query in Example

1 will identity the following phrase, 'MICE CHASING CATS', as a match even though the search argument

is entered in all lower-case characters.

The second OmniFind request in Example 2 performs searches on text data stored in feeddoc, which is

defined as a variable-length character column that stores text captured from various Internet feeds.

This example also incorporates the OmniFind, SCORE function. SCORE returns a relevance score value

that measures how well the target text matches the search criteria. The more occurrences of the search

criteria that are found, the larger the score value is. When a match is not found, a zero score value is

returned. Otherwise, the score value is in a range that is greater than zero and less than one.

This example also shows that you can combine OmniFind functions with traditional SQL syntax, such as

search predicates (feedDate > '01/01/2008') and ordering criteria (ORDER BY searchScore DESC).

Exploring the IBM OmniFind Text Search Server

3

SELECT feedSrc, feedDate,
 SCORE (feedDoc, ‘California insurance settlement’) AS searchScore
 FROM newsfeeds
 WHERE CONTAINS(feedDoc, ‘California insurance settlement’) = 1
 AND feedDate > '01/01/2008'
 ORDER BY searchScore DESC

Example 2: OmniFind with SCORE and CONTAINS

This example also provides another demonstration of the advanced linguistic capabilities of the text-

search server. The search string on both SCORE and CONTAINS refers to the name of a state,

California. The OmniFind server recognizes California as a state and also searches for the two-digit state

abbreviation ('CA') at the same time that it searches for the 'California' string. As a result, the following

sets of news feed text will be identified as a match by this OmniFind search request:

 $100 million insurance settlement to CA firm

 California man wins insurance settlement

These simple examples just scratch the surface of the types of searches that you can perform with

OmniFind Text Search Server. Now that you understand the product’s capabilities at a high level, it is

time to learn about the requirements for OmniFind.

Database requirements

The OmniFind product can be used to index and search text data stored in Db2 tables (physical files).

The table being indexed must contain a ROWID column or have a primary key or unique key constraint

defined over it. A uniquely-keyed physical file cannot be indexed until either the Add Physical File

Constraint (ADDPFCST) command or SQL ALTER TABLE statement have been used to register that

DDS-defined unique key as a constraint. The unique key is required so that OmniFind can update and

maintain the associated text-search index.

You must define a column with one of the following data types to use the OmniFind text search support:

 BINARY

 VARBINARY

 BLOB

 CHAR

 VARCHAR

 CLOB

 DBCLOB

 GRAPHIC

 VARGRAPHIC

Exploring the IBM OmniFind Text Search Server

4

If you use OmniFind to search text in rich-text documents, then you should verify that the document

format type is supported; see the following partial list of document types supported by OmniFind:

 XML

 HTML

 Adobe PDF

 Rich Text Format (RTF)

 Microsoft Excel

 Microsoft PowerPoint

 Microsoft Word

 IBM Lotus® 123

 IBM Lotus Freelance®

 IBM Lotus WordPro

 IBM Lotus Symphony

 OpenOffice 1.1 and 2.0

 OpenOffice Calc

 Quattro Pro

 JustSystems Ichitaro

 StarOffice Calc

This partial list of supported formats shows that OmniFind does support a wide variety of formats —

including the most popular document formats.

You can only specify the OmniFind CONTAINS and SCORE functions on SQL statements that can be

processed by the SQL Query Engine (SQE). That is, if the SQL request or underlying database contain

attributes that cause the Classic Query Engine (CQE) to be used, references to the CONTAINS or

SCORE functions are not allowed.

Exploring the IBM OmniFind Text Search Server

5

Configuring OmniFind

OmniFind Text Search Server runs separately from Db2 for i. Db2 for i interacts with the text search to

process any text-search or text-index requests. Figure 1 depicts this server interaction.

Figure 1: OmniFind Text Search Server

Also notice that the text indexes created and used by OmniFind are also stored separately from normal

Db2 objects. The IFS directory (/QOpenSys/QIBM/ProdData/TextSearch/) used by OmniFind for text

index storage is created during installation of the OmniFind product.

You can manually start and stop OmniFind Text Search Server by using the following configuration stored

procedures, which are found in the SYSPROC schema (library):

 SYSTS_START

 SYSTS_STOP

When the OmniFind Text Search Server has been started manually at least one time, Db2 for i will

automatically try to restart the server when it's not active — including after a system IPL. Whenever Db2

for i receives an SQL statement that references the CONTAINS or SCORE functions, it checks to see if a

text-search server is running and automatically starts the OmniFind Text Search Server when it is not

active. The only time the automatic start process is not performed by Db2 is when the server has been

manually stopped with the SYSTS_STOP stored procedure. The status of the text-search server can be

verified programmatically by interrogating the SERVER_STATUS column in the

QSYS2.SYSTEXTSERVERS catalog.

Understanding text indexes

OmniFind uses text index objects to deliver high-performance searches. A text index object is

implemented as an IFS object instead of a formal IBM i operating system object. Be aware that some

Exploring the IBM OmniFind Text Search Server

6

OmniFind product documentation uses the term collection to refer to a text index. An OmniFind collection

is the IFS directory used to store the contents of a text index.

Text indexes differ from traditional database index technologies in several ways. A key difference is that a

tree-based structure is not used for the index structure. Instead, a text index usually just contains a list of

the significant words found in the underlying text. Various metrics are stored along with the words, such

as the number of occurrences. This unique structural difference is the primary reason text indexes can

outperform traditional index technologies in the area of text searches.

Before learning how to create a text index, it is useful to understand the other differences between Db2

indexes and the text indexes used by OmniFind. The storage location difference is reflected in Figure 1.

Text indexes are stored in IFS, as opposed to being stored within a schema (library) like a traditional Db2

index. This is an important fact to know because it means that your backup process must be changed to

include the IFS directory used by OmniFind. Backup and recovery considerations are fully documented in

the IBM OmniFind Reference Manual (http://publib.boulder.ibm.com/systems).

By default, Db2 indexes are maintained immediately (that is, as the underlying data in a table is changed

through inserts, updates and deletes). This is not the case with an OmniFind text index. Text indexes are

maintained asynchronously on a scheduled basis. The frequency of the scheduled updates is

customizable by the user. The scheduling options are covered in the next section.

To understand the differences between these two indexing technologies in real-world terms, a text index

and SQL index were both created over the same variable-length column in a table. This variable-length

column had a length of 32 000 bytes and the table contained 175 000 rows of data. Table 1 contains

metrics that capture some of the differences between the two indexing technologies. (Your performance

results will vary based on the data and system configuration.)

The first thing that jumps out from this table is how much longer it took to create the text index. That is not

too surprising when you consider that OmniFind has to parse and process each individual word stored in

the column. Contrast that process with the SQL index approach, which essentially treats all of the text in

the column as a very long, single word. It is easy to see why the SQL index creation runs so much faster.

Although the long build time for text indexes can be troubling, realize that the SQL index is useless when

it comes to speeding up text searches against the variable-length column. When an application needs to

determine if the string 'IBM' is contained anywhere within the column, the SQL index cannot be used to

search the text within the column. Using traditional SQL, the application must perform a byte-by-byte

search of the entire column. The text index can figure out instantly whether the search string 'IBM' exists

anywhere within the column. Text indexes trade longer build times for high-speed search performance at

run time. Tips for improving the build times for text indexes are covered in a later session.

Metrics SQL index Text index

Creation time 3 minutes 3 hours

Object size 1.7 GB 0.1 GB

Table 1. Comparison of SQL and Text index

Exploring the IBM OmniFind Text Search Server

7

This extra processing that occurs during the creation of a text index also explains the large difference in

object sizes. The key values in the SQL index contain white spaces and multiple occurrences of the same

word because the variable-length column value is treated as one long word. In contrast, the text index

build process eliminates white space as it parses each individual word within the column. The text index

also only stores a single occurrence of each word. Thus, it is no surprise that text indexes are much

smaller in size than traditional SQL indexes.

Creating a text index

Similar to the text search server, you create and manage OmniFind text indexes by using system stored

procedure calls. The SYSTS_CREATE stored procedure in SYSPROC supplies the text index creation

interface. Example 3 shows a sample call to the SYSTS_CREATE procedure.

CALL SYSPROC.SYSTS_CREATE (
 ‘myschema’,
 ‘resumes_index’,
 ‘myschema.resumes(applicant_resume)’,
 ‘FORMAT INSO UPDATE FREQUENCY D(*) H(*) M(0) INDEX
CONFIGURATION(UPDATEAUTOCOMMIT 500000)’
)

Example 3: Sample text index creation

The first two parameters are used to supply the text index schema and object names, respectively. For

this example, the text index name and schema are resumes_index and myschema. The third parameter

identifies the column that contains the text or document that needs to be indexed. This example creates

an OmniFind text index on the applicant_resume column in the resumes table found in myschema. The

applicant_resume column is a 250 MB BLOB column that is used to store rich-text documents containing

resumes. The fourth and final parameter is an options parameter. The options parameter in this example

specifies the format of the text being indexed and controls the frequency of updates to the text index.

The FORMAT option describes the format of the text in the column that is being indexed. In this case, the

INSO format is specified because the resume text is stored in rich-document formats. The stored resume

documents do not have to use the same document format. The INSO format type allows the resume

documents that are stored in this column to use any of the document types supported by OmniFind

(Adobe PDF, Microsoft Excel, RTF, and more). While the INSO format type does support all of the

document format types, it should only be used when there is a mix of document formats. For instance,

specifying the INSO format for a column containing plain text would unnecessarily slow down the text

index build time.

The other supported FORMAT values are: TEXT, XML and HTML. With these format values, all of the

documents in the indexed column should be of the same format. Again, a careful review of the underlying

text data should be performed to ensure that the FORMAT value correctly describes the format of the text

data. Unexpected results and performance slowdowns may occur when the FORMAT option value does

not fully match the data in the indexed column. For example, if a column contains XML documents and

TEXT is specified for FORMAT value is TEXT, then the user will not be able to use the XML search

functionality. This example is a scenario that OmniFind is unable to recognize as having an incompatible

FORMAT value — in some situations, OmniFind will signal a parser error when the FORMAT option value

is not compatible with the underlying text data.

Exploring the IBM OmniFind Text Search Server

8

The UPDATE FREQUENCY option dictates how often the text index is automatically updated to reflect

changes that have been made to the indexed column. Remember that text indexes are not maintained

immediately to reflect data changes (as are SQL indexes). Users control the text index maintenance

behavior with the UPDATE FREQUENCY and UPDATE MINIMUM options. If an update frequency is not

specified, the text index is not updated on a scheduled basis. Instead, an administrator must update the

text index manually. The text index in this example is updated every day at the start of every hour

because of the '*' character specified on the day and hour attributes. You can find out more information on

the update-frequency values in the IBM OmniFind Reference Manual

(http://publib.boulder.ibm.com/systems).

The remaining low-level text index configuration options must be specified along with the INDEX

CONFIGURATION keyword. The command in Example 3 specifies a value for the

UPDATEAUTOCOMMIT configuration option. During the index update process, the

UPDATEAUTOCOMMIT configuration option controls how frequently index updates are committed and

how often synchronization occurs between the text-search server and the requesting Db2 job. The default

value for UPDATEAUTOCOMMIT is 150. Specifying a larger value for this option can significantly

improve the performance of the initial index update or build. The performance impact of this index

configuration option is covered in more detail in a later section.

Here is a list of the options that you can specify on the options parameter of the SYSTS_CREATE stored

procedure. Details on each option can be found in the IBM OmniFind Reference Manual

(http://publib.boulder.ibm.com/systems).

 Text information

 CCSID

 LANGUAGE

 FORMAT

 Index maintenance options

 UPDATE FREQUENCY

 UPDATE MINIMUM

 Index configuration options

 CJKSEGMENTATION

 COMMENT

 IGNOREEMPTYDOCS

 KEY COLUMN

 SERVER

 UPDATEAUTOCOMMIT

When a text index is created, five additional Db2 objects are also created. Figure 2 shows these Db2 for i

objects that are created in addition to the text index object that resides in the IFS. An application

Exploring the IBM OmniFind Text Search Server

9

performing a text search never needs to refer to these objects. Instead, the OmniFind Text Server uses

the objects for internal processing.

Figure 2: Objects created by SYSTS_CREATE

Awareness of these objects is good knowledge to have because four of the five additional Db2 objects

create object dependencies on the table that is being indexed. First, an SQL view is created with the

same name as the text index name that references the underlying table. The SQL view contains data

about the underlying text index, such as the staging table name, number of pending updates, and a

timestamp reflecting the last time that the text index was updated. This type of information can be

beneficial to an administrator or programmer looking to check on the current status of a text index. The

SQL view also serves as a symbolic link between the table and the text index object that is stored in IFS.

When database object relationships are examined with tools, such as the IBM Access Client Solutions

(ACS) Show Related task or the Display Database Relations (DSPDBR) system command, the SQL view

created by OmniFind represents the text index's relationship to the underlying table.

Three SQL triggers are also created on the underlying table. Db2 for i calls these SQL triggers after every

update, insert and delete on the underlying table to capture any changes that were made to the indexed

text column. The SQL triggers are responsible for tracking changes to the text data, so that the changes

can eventually be propagated to the text index object.

The text data changes are tracked by writing rows into a staging table. The staging table is the only Db2

object created by OmniFind that does not directly reference the table being indexed. The staging table

has an indirect relationship with the column being indexed. The OmniFind server creates all staging

tables in the QSYS2 schema (one staging table for each text index). When the specified update-

frequency threshold is reached, OmniFind uses the staging table to determine which changes to

propagate to the text index.

The System Catalogs box in Figure 2 highlights the fact that OmniFind adds text index metadata to Db2

system catalogs in QSYS2 each time a text index is created. You can also query these catalog views to

determine the status of the text-search search server, a text index, or the relationship with Db2 objects.

Exploring the IBM OmniFind Text Search Server

10

A text index is not populated with values during the initial creation. By default, the text index population is

deferred until the first update-frequency threshold is reached. Another alternative is manually updating the

text index with SYSTS_UPDATE stored procedure or initiating a full index rebuild with the

SYSTS_REPRIMEINDEX stored procedure. Both of these system stored procedures are discussed later

in this paper.

Populating a text index

One of the ways to manually update a text index is with the SYSTS_REPRIMEINDEX stored procedure.

This procedure performs a full rebuild of the text index by clearing the contents of the index and

repopulating it with values stored in the indexed column. Often, the SYSTS_REPRIMEINDEX procedure

is called immediately after creating a text index instead of waiting for the first scheduled update period to

populate the newly created index. Outside of being used immediately after a text index creation, the

SYSTS_REPRIMEINDEX should only be called when the data in the existing index needs to be thrown

away and repopulated. This situation could occur on a restore operation where a backup copy of the

underlying table is restored and the data in the table does not match up with the contents of the text

index.

Example 4 shows an invocation of this procedure. The text index's schema name and object name are

the first two parameters on the SYSTS_REPRIMEINDEX procedure call. The third parameter is reserved

for future usage.

CALL SYSPROC.SYSTS_REPRIMEINDEX (
 ‘myschema’,
 ‘resumes_index’,
 ''
)

Example 4: Sample of SYSTS_REPRIMEINDEX

Batch execution of the index rebuild (or initial build) can be accomplished by using the Run SQL

Statements (RUNSQLSTM) system command to perform the procedure call. In fact, any of the OmniFind

stored procedures can be executed in batch mode with the RUNSQLSTM command.

The performance recommendations discussed in the index maintenance section of this paper also apply

to invocations of the SYSTS_REPRIMEINDEX stored procedure.

Maintaining a text index

Although updates to a text index are not performed immediately, as it is for an SQL index, text index

updates can occur automatically. You can control the automatic updates by supplying update-frequency

settings during the initial index creation with the SYSTS_CREATE procedure. You can use the

SYSTS_ALTER procedure to add or change the update settings on an existing OmniFind text index.

The update settings consist of two values — UPDATE FREQUENCY and UPDATE MINIMUM. UPDATE

FREQUENCY controls the scheduling of the text index update. The settings specified on this option dictate

how often changes to the underlying text column are propagated to the associated text index. The maximum

frequency you can specify for text index updates is five minutes. The text index update frequency is likely to be

different for each application, depending on business requirements. Weekly updates to a text index might work

for one application, yet another text-search solution needs hourly updates.

Exploring the IBM OmniFind Text Search Server

11

Example 5: Sample SYSTS_ALTER procedure

 demonstates the usage of the SYSTS_ALTER stored procedure to change the UPDATE FREQUENCY

value for an existing index. In this case, the text index will now be automatically updated twice an hour —

at the beginning of the hour and halfway through the hour at the 30-minute mark.

CALL SYSPROC.SYSTS_ALTER('ixschema', 'ixname',
 'UPDATE FREQUENCY D(*) H(*) M(0,30)')

Example 5: Sample SYSTS_ALTER procedure

UPDATE MINIMUM is the other option that directly influences the automatic update behavior of a text

index; it sets a threshold for the minimum number of updates that must have taken place on the indexed

column to enable the automatic text index update. Consider a text index that is created to be

automatically updated nightly at midnight. In addition, the text index is created with an UPDATE

MINIMUM value of 100. At midnight, the OmniFind server only updates the text index if at least 100 rows

in the indexed column were changed since the last update to the text index. If the minimum number of

changes threshold is not reached, the automatic index update is deferred until the next frequency interval

is reached.

If the UPDATE MINIMUM value is not specified, the default value is 1. This means that automatic index

processing occurs when at least one change has been made to the indexed column

Example 6 shows the UPDATE MINIMUM option in action on the SYSTS_ALTER and SYSTS_UPDATE

stored procedures. The SYSTS_ALTER stored procedure changes the UPDATE minimum setting to 250

for an existing text index. This means that the automatic index updates are only done when there have

been at least 250 changes to the underlying text column. The SYSTS_UPDATE stored procedure is

called to initiate manual updates to a text index. The default behavior is for the SYSTS_UPDATE to

unconditionally update the text index. When the USING MINIMUM UPDATE parameter is specified, the

manual index update only takes place if the indexed column has changes that exceed the index's

UPDATE MINIMUM threshold value.

CALL SYSPROC.SYSTS_ALTER('ixschema', 'ixname', 'UPDATE MINIMUM 250')

CALL SYSPROC.SYSTS_UPDATE('ixschema', 'ixname', 'USING UPDATE MINIMUM')

Example 6: Samples of the UPDATE MINIMUM option

Behind the scenes, OmniFind use the IBM i job scheduler to schedule the automatic index updates. The

OmniFind scheduler entries can be reviewed with the Work with Job Schedule Entries (WRKJOBSCDE)

command. The OmniFind entry-scheduler job names start with the prefix of US.

The incremental-update process is represented visually in Figure 3. As changes to the indexed table are

made, the SQL triggers that were created by OmniFind log a record of the changes into the associated

staging table. When the next automatic index update initiates, the OmniFind server interrogates the

staging table to determine which changes in the indexed column need to be propagated to the text index.

This enables only the changed column values to be processed instead of the OmniFind server having to

process all of the column values.

Exploring the IBM OmniFind Text Search Server

12

Figure 3: Incremental-update process

A text index does remain searchable during the incremental-update process.

Index maintenance performance

As documented earlier, the UPDATEAUTOCOMMIT index configuration option can be used to

significantly improve the performance of index maintenance and index builds. The

UPDATEAUTOCOMMIT configuration option controls how frequently index updates are

committed and how often synchronization occurs between the text-search server and the

invoker's job. By default, synchronization processing and commits are performed after every 100

updates. These extra synchronization operations can slow index maintenance performance

significantly.

The commit operations release locks acquired by OmniFind when processing rows in the staging

table. During the initial build of an index, the staging table should not contain any rows. Thus, in

this initial build scenario the commit operations are providing no value to the index build process.

Specifying a larger value for the UPDATEAUTOCOMMIT configuration option enables you to

reduce the number of times that OmniFind interrupts the index build and maintenance processes

to issue commit operations and synchronization processing. In one performance test, the index

build process ran 6 times faster than the default settings when a value of 50000 was used for the

UPDATEAUTOCOMMIT option when building an index over a table containing 35000 rows.

Obviously, performance results will vary from system to system.

While a large UPDATEAUTOCOMMIT option value can improve performance, it can also

produce a negative impact in some situations. A large value results in synchronization and

commits being executed less often. As a result, system resources such as locks are held longer

which can put a burden on system performance — especially in the following two scenarios:

Exploring the IBM OmniFind Text Search Server

13

 An incremental update is being performed on the text index and the associated staging

table contains thousands of changes

 An index build or incremental update is being performed over text data that results in a

large number of errors and warnings being returned. Errors and warnings can be caused

when the text-search server encounters anomalies such as malformed XML documents

and corrupt rich-document format files.

If these two scenarios will be common occurrences with your application environment, then a

smaller UPDATEAUTOCOMMIT value is recommended.

Another possible solution is use a mix of UPDATEAUTOCOMMIT settings for a text index. A

large UPDATEAUTOCOMMIT value is specified for the initial build of a text index to improve build

performance. After the index build completes, the UPDATEAUTOCOMMIT option is reduced to a

smaller value to minimize the time that system resources are held during incremental index

updates. demonstrate

Example 7 contains a recreation of this scenario demonstrating how to vary the

UPDATEAUTOCOMMIT option with the SYSTS_ALTER stored procedure. First, the

UPDATEAUTOCOMMIT is set to a 100000. A text index can also be created with a large

UPDATEAUTOCOMMIT setting as displayed in Example 3. Next, the SYSTS_REPRIMEINDEX

procedure initiates the text index build process with the large commit setting active. After the

index build completes, the SYSTS_ALTER procedure is called to reduce the

UPDATEAUTOCOMMIT option to a smaller value.

CALL SYSPROC.SYSTS_ALTER('ixschema', 'ixname',
 'INDEX CONFIGURATION(UPDATEAUTOCOMMIT 100000)')
CALL SYSPROC.SYSTS_REPRIMEINDEX('ixschema', 'ixname', '')
CALL SYSPROC.SYSTS_ALTER('ixschema', 'ixname',
 'INDEX CONFIGURATION(UPDATEAUTOCOMMIT 100)')

Example 7: Using multiple UPDATEAUTOCOMMIT values

Dropping a text index

The SYSTS_DROP stored procedure provides the mechanism for dropping (deleting) a text index. This

procedure removes the text index object that resides in the IFS and also removes the additional Db2

objects (see Figure 1) that the OmniFind server created for internal processing.

Note that dropping a table may not delete the text index object or any of the Db2 objects associated with

the text index. Thus, removal of a text index and its associated objects should be done with the

SYSTS_DROP stored procedure.

Calling the SYSTS_DROP procedure is straight-forward since it only requires the name of the text index

schema and text index as parameters.

Exploring the IBM OmniFind Text Search Server

14

Indexing external data

As mentioned earlier, the OmniFind Text Search server also has the ability to index and search text data

that is not stored in a Db2 for i table. Assume there is an IFS directory on your server that contains

brochures for each of your products in PDF format. With just a little setup with the OmniFind extensions

for Db2 for i, the OmniFind server can index the text data in those PDF brochures and enable SQL

searches against that same text data — even though the data is external and stored outside of Db2 for i.

Before external objects such as IFS, spool files, and source physical file members can be searched, a

text search collection must be created using the SYSTS_CREATE_COLLECTION stored procedure in the

SYSPROC library:

CALL SYSPROC.SYSTS_CREATE_COLLECTION
 ('TEXTCOLL1' ,
 'UPDATE FREQUENCY D(*) H(0) M(0) FORMAT TEXT')

Example 8: Creating collection for external objects

This invocation would result in the creation of a schema name TEXTCOLL1 on the system

With the text search collection object in place, the next step is registering the spool file and stream file

objects for indexing and searching. There are three different stored procedures available to add objects to

the text search collection.

 ADD_IFS_STREAM_OBJECT_SET
 ADD_SPLF_OBJECT_SET
 ADD_SRCPF_OBJECT SET

Adding an object set to the collection does not update the associated text search index with the text data

from the objects in that set. Instead, an object set defines a set of objects that will be included in the index

during the update process (whether during a manual or scheduled update of the associated text search

index).

Assuming that the product brochure PDF file are stored in three different IFS directories, the stream file

objects from all three different IFS directories need to be registered to the TEXTCOLL1 text search

collection with the following procedure calls:

CALL TEXTCOLL1.ADD_IFS_STMF_OBJECT_SET('/home/km');
CALL TEXTCOLL1.ADD_IFS_STMF_OBJECT_SET('/home/km/subdir1');
CALL TEXTCOLL1.ADD_IFS_STMF_OBJECT_SET('/home/km/subdir2');

Example 9: Adding external objects to a text collection

Before performing searches on the objects in a text search collection, you may want to verify the objects

in the collection with a call to the GET_OBJECT_STATUS stored procedure in the text search collection.

As you can see in this example, this stored procedure has no parameter and returns a result set with a list

of the external objects in that collection.

CALL TEXTCOLL1.GET_OBJECT_STATUS();

Example 10: Checking status of external objects in the collection

Exploring the IBM OmniFind Text Search Server

15

Graphical management interface

The IBM ACS client provides a graphical interface for creating, managing, and dropping IBM OmniFind

text indexes. This enables both traditional Db2 indexes and IBM OmniFind text indexes to be managed

from the same interface as shown in Error! Reference source not found..

Figure 4: Graphical management interface for IBM OmniFind indexes

Exploring the IBM OmniFind Text Search Server

16

OmniFind search capabilities
As documented earlier in this paper, the CONTAINS and SCORE function provide the interface that

enables an application to perform advanced, high-speed searches using the text index. Figure 5 shows a

visual representation of this search process. Each invocation of the SCORE and CONTAINS functions

results in the request being passed along to the OmniFind Text Search Server for execution.

Figure 5: Overview of search processing

Interaction with the text search server is transparent to the developer. The developer simply needs to

understand the syntax and semantics of these two functions.

CONTAINS function

As shown in earlier examples, the CONTAINS function provides the interface for searching a text index.

The function returns an integer value of 1 if the specified column contains a match for the specified

search argument. A value of 0 is returned if no match is found.

The CONTAINS function accepts up to three parameters with the third parameter being optional. The

three respective parameters are:

 Column name: This parameter identifies the name of the column that has a text index created

over it.

 Search argument: This parameter contains the search string that will be used when trying to find

a match in the text index.

 Search argument options: This optional parameter contains options to customize the search

behavior. The available options are QUERYLANGUAGE, RESULTLIMIT and SYNONYM. When

this parameter is specified, it does not have to contain a reference to all three options. If multiple

options are specified on the parameter, they must be separated by at least one blank space.

Exploring the IBM OmniFind Text Search Server

17

Example 11 shows an invocation of the CONTAINS function with all the parameters specified. In this

example, the OmniFind server identifies customers who have expressed an interest in product changes.

The first thing to notice is that the search-string value is not passed as a literal value. Instead, the search

string value is passed indirectly through a host variable. The RESULTLIMIT search option specifies that

the result set returned by this query request should contain a maximum of 100 matches. Thus, if more

than 100 customers ask for a product change, the result set is limited to 100 customers.

char search_arg[100];
 ...

EXEC SQL DECLARE C1 CURSOR FOR
 SELECT custkey FROM customers
 WHERE CONTAINS(comments, :search_arg, 'RESULTLIMIT = 100') = 1 ;
 ...
EXEC SQL SET :search_arg = 'product change';

EXEC SQL OPEN C1;
 ...

Example 11: CONTAINS function with all three parameters

Search argument options

Here are more details on the search argument options:

 RESULTLIMIT: As shown in Example 11, you can use this option to identify the maximum result-

set size returned by the associated query. If the Db2 query optimizer determines that the best

query plan involves calling the OmniFind server for each row of the result, the RESULTSET

option is ignored. Therefore, an application must not have dependencies on this option limiting

the number of results returned on a query.

 QUERYLANGUAGE: This option identifies the language of the search string and does not have

to be specified when the search-string language matches the language of the indexed text as

well as the language value of the text index. This is reinforced in earlier examples of the

CONTAINS functions where the QUERYLANGUAGE option is omitted because the search string,

indexed text and text index all use the English language. Example 12 shows that the language

option requires a five-character language code. The list of supported language codes are found

in the IBM OmniFind Reference Manual (http://publib.boulder.ibm.com/systems). For this

example, let’s assume that the account_status column contains a combination of English and

French text. The CONTAINS invocation in Example 12 denotes French as the query language

because the search string is a French word. Not only does the QUERYLANGUAGE option

denote the language of the search string, it also tells the OmniFind server which internal

dictionary to use on the search request. OmniFind uses these internal dictionaries to determine

the linguistic variations of a word. The search string in this example is en retard, which is the

French word for late. With the language option set to French, the CONTAINS function also

returns matches for variations of en retard, such as plus retard (the French word for later). If the

QUERYLANGUAGE option is left to its default value of English, the text-search server can only

match exact occurrences of en retard, because the English dictionary has no variations for this

French word.

Exploring the IBM OmniFind Text Search Server

18

… CONTAINS(account_status, 'en retard', 'QUERYLANGUAGE=fr_FR') = 1 …

Example 12: A sample QUERYLANGUAGE option

 SYNONYM: This option enables a synonym dictionary to be applied when searching the text

index. Being able to provide a user-defined list of synonyms allows you to further enhance the

advanced search capabilities of the OmniFind text-search engine. Remember that the base

support in the OmniFind server is able to recognize linguistic variations of the same word as

equivalent. For example, a search string of 'man' returns matches for text that contains the word

man or men. The synonym option allows you to customize the OmniFind search engine to

recognize matching terms in your specific industry. For instance, 'program' and 'code' can be

recognized as matching terms when searching data related to the software industry. You supply

the synonym dictionary by creating an XML file, and then you must use a tool to associate the

synonym file with a text index. Synonym dictionaries are covered in detail later. Even though the

synonym dictionary file is associated with a text index, the synonyms are only used by the

OmniFind server when the string 'SYNONYM=ON' is specified as a search-argument option.

SCORE function

The SCORE function returns a relevance score denoting how well the target text matches the specified

search argument. The result of the function is a double-precision floating-point number. The result value

is greater than 0 and less than 1 when a match is found for the specified search criteria. The result value

is larger when the search value has been matched repeated times in the indexed text. A value of 0 is

returned when no matches are found.

As you might expect, the SCORE function uses the same three parameters as the CONTAINS function.

The example in Example 13 shows how the SCORE and CONTAINS functions can be used together. The

SCORE function is frequently used in conjunction with the CONTAINS function — using the identical

parameter values (as shown in this example) to provide a search rating for those text values identified as

a match. Normalizing the floating-point value returned from the SCORE function by multiplying it by 100

and converting it to an integer is another common practice to make the rating value easier to read and

understand.

SELECT projID, projAuthor,
 INTEGER(SCORE(thesis,
 '(parallel OR scalable) AND programming') * 100)
 AS relevance
FROM projects
WHERE CONTAINS(thesis, '(parallel OR scalable) AND programming')=1
ORDER BY relevance DESC

Example 13: Using SCORE and CONTAINS functions together

Exploring the IBM OmniFind Text Search Server

19

Search argument syntax

The search argument in Example 13 shows some of the advanced syntax provided by the OmniFind

product.

Logical operator syntax

The search argument in the prior example includes the logical operators of AND and OR. Logical

operators provide developers with the capacity to construct complex search requests to meet their

business requirements. The logical operators and grouping of search terms with parentheses in this

example enable OmniFind to identify those thesis documents that contain a combination of 'parallel

programming' or 'scalable programming'. The ability to include logical operators within the search

argument enables this query to be performed with a single request, instead of having to code multiple

queries.

When multiple words are contained in the search string, the default logical operator is AND. Thus, a

search string of 'computer hardware' is equivalent to the search string of 'computer AND hardware'.

This search string only returns a match when the target text contains both computer and hardware in

the search string. You can also specify the AND logical operator by using the plus sign (+).

In addition, the text-search server includes support for the NOT logical operator, which you can also

specify with the minus sign (-). The NOT operator provides the ability to exclude terms from the

search results. The CONTAINS example in Example 14 finds those papers that discuss secure

systems, but excludes any results that reference the Windows operating system.

… CONTAINS(papers, 'secure system - windows') = 1 …

Example 14: Sample use of the minus operator

You must enter the logical operators values of AND, OR and NOT in all uppercase to be recognized

as logical operators.

Search-argument syntax

A set of double quotes ("..") transforms an OmniFind search request from a fuzzy search to an exact

search. Specifying a search argument of '"late"' on CONTAINS or SCORE only returns a match when

the target text contains the word late. With an exact match specified, the linguistic variations of a word

are not considered, so text values containing the word later or latest are not identified as matches.

Even when an exact match is specified, OmniFind performs the search in a case-insensitive manner.

OmniFind search processing can become fuzzier with the usage of the wildcard character (*). A

wildcard character can be useful when the exact spelling of a word or name is not known. A search

argument of 'Sh*n Green*', for instance, could return matches for the following spellings of a name:

Shonn Greene, Shawn Green and Shaun Greene. You can also use the wildcard character when

parts of a name or title are unknown. The search argument of '"John * Kennedy"' identifies John F

Kennedy and John Fitzgerald Kennedy as matches, yet ignores John Kennedy as a match. Because

an exact match was specified with double quotes, the '"John * Kennedy"' search argument does not

identify John Smith and Jane Kennedy as a match because there is more than one word in between

the search terms of John and Kennedy. Adding a wildcard character to the beginning of a search

argument ('*ter) can slow down the search processing, so use this type of search argument sparingly.

Exploring the IBM OmniFind Text Search Server

20

You can customize and weight the relevance score of a text match by using the boost-factor option

(^). When a search argument contains multiple words, you can use the boost factor to give a heavier

matching weight to one of the words. The search argument in Example 15: Using the boost factor

 matches any text value that contains Iowa or Minnesota. However, the boost factor results in a

higher relevance score for those text values that contain Iowa.

SELECT SCORE(textcolumn, 'Iowa^5 OR Minnesota')

Example 15: Using the boost factor

Searching through XML

OmniFind Text Search Server includes support for indexing and searching XML documents. OmniFind

server support allows text searches to be scoped to a specific XML element, attribute or combination

thereof. Scoped searches are possible because the OmniFind XML search syntax is based on the XPath

standard. Scoped searches of XML documents can improve performance because they reduce the

amount of text in the XML document that must be scanned.

To use the OmniFind XML support, a text index must first be created with a format option that supports

XML. That format value not surprisingly is XML. Example 16 shows a text index that is created to support

the indexing of XML documents. With this example, the XML documents are stored in a CLOB column

(storeBooks) within a Db2 table. Notice that the invocation of the SYSTS_CREATE stored procedure

specifies a format type of XML to create a text index for the XML documents that are stored in the Db2

table. The XML format type enables the text-search index to classify and process each XML tag and

attribute in addition to the real business values contained in the XML document.

The INSO format value can process and index XML documents. The INSO format, however, does not

retain any of the XML attribute or element tags in the text index. As a result, XML-specific searches

cannot be performed when the format value is INSO.

CREATE TABLE mylib.books (
storeID INTEGER,
storezip CHAR(5) ,
storeBooks CLOB(500K),
PRIMARY KEY(storeID)) ;

CALL SYSPROC.SYSTS_CREATE (
 'MYLIB',
 'BOOKS_IX',
 'MYLIB.BOOKS(storeBooks)',
 'FORMAT XML UPDATE FREQUENCY D(*) H(*) M(0)'
);

Example 16: Creating XML text index

You can perform XML-specific searches with the same CONTAINS and SCORE functions that have

already been discussed. When a CONTAINS or SCORE search argument contains an XML search

expression, special syntax is required to direct the OmniFind server to use the XPath parser instead of

the normal parser. Activation of the XPath-based parser is accomplished by specifying the @xmlxp

opaque term at the beginning of the search argument. The @xpath opaque term used in previous

versions of IBM OmniFind has been deprecated and should no longer be used. However, IBM OmniFind

still supports the @xpath opaque term for compatibility.

Exploring the IBM OmniFind Text Search Server

21

All XML search arguments that you specify on the CONTAINS function must have the format of the XML

search string, @xmlxp. You must also always wrap an XML search expression in single quote characters

('XML search string'). An extra set of single quotes is required on the CONTAINS function because the

XML search string is embedded within the search argument string. To include a single quote character(')

within an SQL character string, you must repeat the single quote value two consecutive times. This is why

the XML search string expression is delimited by two sets of single-quote characters.

The XML search syntax is documented in detail in the IBM OmniFind Reference Manual

(http://publib.boulder.ibm.com/systems). A good understanding of XPath is required to understand and

effectively use the XML search capabilities provided with the OmniFind product since it's based on the

XPath standard. If you lack XPath knowledge, it is possible to find many XPath tutorials online. Several

XML search examples are included to highlight key aspects of the OmniFind XML search syntax and

expressions.

Exploring the IBM OmniFind Text Search Server

22

All search examples assume that the sample XML file in Example 17 is stored in the books table

(discussed earlier).

<bookstore>
 <book genre="autobiography" publicationdate="2008-05-01"
 ISBN="1-414318-02-2" price="14.99">
 <title>Quiet Strength</title>
 <author>
 <first-name>Tony</first-name>
 <last-name>Dungy</last-name>
 </author>
 <publisher>Tyndale</publisher>
 </book>
 <book genre="inspiration" publicationdate="2000-02-01"
 ISBN="0-310234-93-X" price="7.99">
 <title>The Man in the Mirror</title>
 <author>
 <first-name>Patrick</first-name>
 <last-name>Morley</last-name>
 </author>
 <publisher>Zondervan</publisher>
 </book>
 <book genre="religion" publicationdate="1996-08-01"
 ISBN="0-842329-12-9" price="14.99">
 <title>Left Behind: A Novel of the Earth's Last Days</title>
 <author>
 <first-name>Tim</first-name>
 <last-name>LaHaye</last-name>
 </author>
 <publisher>Tyndale</publisher>
 </book>
 <book genre="sports" publicationdate="2003-08-01"
 ISBN="1-590521-550-2" price="19.99">
 <title>Racing to Win</title>
 <author>
 <first-name>Joe</first-name>
 <last-name>Gibbs</last-name>
 </author>
 <publisher>Doubleday</publisher>
 </book>
</bookstore>

Example 17: A sample XML file for searching

Exploring the IBM OmniFind Text Search Server

23

At a high level, the example XML search in Example 18 returns store information for those stores that

have the term 'winning' in any of their book titles. Let's examine each part of the XML search string to

make sure it is fully understood. The XML search string is valid because it begins with the @xmlxp

opaque term and the embedded XML search expression (//title[. contains("winning")) is delimited with two

pairs of single quotation marks.

SELECT storeid, storezip FROM books WHERE
 CONTAINS(storebooks, '@xmlxp:''//title[. contains("winning")]'' ')=1

Example 18: XML element search for books with the term “winning” in the title

As you might expect, the reference to the title element on the XML search expression constrains the

search to only the values of the title elements within the XML document. The two consecutive slash

values (//) denote that title elements at any level should be searched. If a single slash value had been

specified with title (/title), the search is limited to only those XML documents that have a top-level element

tag named title. This XML document as shown in Example 17 does not meet the top-level tag requirement

because the title element is a nested child tag.

Note that the wildcard character (*) cannot be specified on any XML search path (for example,

/root/partialtag*). All XML tag values must be specified in their entirety.

The next part of the search request as shown in Example 18 is the search predicate, which must always

be wrapped in bracket characters ([…]). Search predicates are used to find a specific node or a node

containing a particular value. Based on the XML search syntax in Example 18,, the requestor looks for a

node element that contains the term winning. The period character (.) indicates that the value of the

current XML node (the title node in this example) should be compared with the specified search

argument. Thus, in written form, the complete search request states that OmniFind must find all title

elements at any level and determine if any title element values contain the inputted search-string value

(winning).

Also notice that the XPath-based search expressions use the contains operator instead of an =

comparison operator. This enables the linguistic capabilities of the OmniFind search engine to be applied

to the specified search string. The linguistic search engine enables the book titled "Racing to Win" in

Example 17 to be identified as a match for this XML search request, because the word win is a linguistic

variation of winning. You can only specify the = comparison operator for XML attributes, and it behaves

differently than expected — more on this later.

The XML contains operator supports almost the same search argument syntax as the CONTAINS

function. For instance, an XML search request can find winning or success in the title by using the

following search expression: //title[. contains("winning OR success")]. Along with logical operators, the

XML contains operator can also include parentheses to control the precedence of the search strings.

When you specify search-argument options (for example, SYNONYM and QUERYLANGUAGE) on the

third parameter of the SQL CONTAINS function, those search options apply to the XML search request.

Exploring the IBM OmniFind Text Search Server

24

There are some subtle differences between the CONTAINS function and the XML contains operator. Two

key differences are highlighted here. First, the XML contains operator uses a different delimiter for the

search string. The delimiter is a pair of double-quote characters ("winning") instead of the single-quote

character that is used on the CONTAINS function. If it is necessary for the XML search request to only

return exact matches for the winning search argument, double-quote characters must be placed around

the search argument, just as the SQL CONTAINS function requires. A double set of quotation marks
(contains("""winning""")) is needed to differentiate these double-quotation marks from the single pair of

double-quotation marks required by the XML contains operator.

Second, the XML search syntax provides an exclude operator, which you can view as the opposite of the

XML contains operator (NOT contains). An XML search expression of '//title[. excludes("last")] returns a

match for any XML document that has at least one title element that does not contain the search term

'last'. This search expression returns a match for the sample XML document in Example 17 because

three of the four title values do not contain the word last.

Example 19: Performing an XML attribute search

 contains a model of how to search for a specific XML attribute. Unlike the previous XML search example,

this request specifies that you conduct the attribute search at a specific level within the XML document.

By specifying a path of '/bookstore/book', the search is limited to those XML documents that have the

bookstore element at the top-level and a direct child-element of book. In addition, the search request

looks for book elements with specific attribute values. The search predicate looks for a price attribute that

is less than $15.00 or a genre attribute that is equal to autobiography. The search criteria for the two

attributes are combined with the or logical operator. You must specify logical operators, such as or and

and, in lower case when they are referenced on an XML search expression.

SELECT storeid, storezip FROM books
WHERE CONTAINS(storebooks,
 '@xmlxp:''/bookstore/book[@price<15.00 or @genre="autobiography"]'' ')=1

Example 19: Performing an XML attribute search

The = operator does support string comparisons as depicted in Example 19, but you must use it carefully

because this string-comparison operation might behave differently than expected. When the = operator is

applied to attribute strings, the comparison is case-insensitive and the order of terms is not enforced. For

example, a search predicate value of @myattribute="first second" matches with @myattribute="FIRST

SECOND", @myattribute="second first" and @myattribute="second middle first". Further, the = operator

only looks for exact matches of the search words and does not consider linguistic variations. As noted

earlier, linguistic variations are only referenced with the XML contains operator. Example 21 shows the

evaluation of the genre attribute implemented with the contains operator.

Numeric comparisons

With the initial IBM OmniFind support in the IBM i 6.1 release, only the XML attribute search

predicate could use the comparison operators (=,>,<,>=,<=,!=) with numeric values. The current IBM

OmniFind version enables XML element comparisons with numeric values.

Date and DateTime comparisons

IBM OmniFind provides support for using the comparison operators with Date (2010-10-15) and

DateTime (2011-05-20T13:15:00.000000) values. The comparisons are limited to only those Date or

Exploring the IBM OmniFind Text Search Server

25

DateTime values that match the ISO format. As Example 20 shows, the search values must be

wrapped with the xs:date()) or xs:dateTime() function calls.

/order[@creationtime >= xs:dateTime(“2010-10-13T15:30:00”)]

/employee[birthdate = xs:date("1998-04-20")]

Example 20: Date and DateTime comparison

The XML search in Example 21 also shows how to specify search criteria for both XML elements and

attributes on a single request. This request looks for an XML document with a top tag of bookstore with a

direct child element of book. The book element must contain the same attribute values specified in

Example 19 — a price attribute less than $15.00 or a genre attribute value of autobiography. When a

book element is found that meets the required attribute criteria, then the search request checks that book

element for a direct child title element that contains quiet and strength in the book title. This XML search

request would return a match on the book authored by Tony Dungy from Example 17.

SELECT storeid, storezip FROM books
WHERE CONTAINS (storebooks,
'@xmlxp:''/bookstore/book[@price < 15.00 or
@genre contains("autobiography")]/title[. contains("quiet AND strength")]''
') = 1

Example 21: Combined search of XML attributes and elements

You can also implement this combination search for specific XML attributes and elements with the search

request found in Example 22 that uses a single XML search predicate. The attribute-search criterion is

slightly altered with the addition of parentheses to ensure that one of the attributes meets the specified

criteria before checking the title element value. The reference to the title element on the book element

search predicate dictates that the book element must have a direct child title element that contains quiet

and strength in the specified search criteria.

SELECT storeid, storezip FROM books
WHERE CONTAINS (storebooks,
'@xmlxp:''/bookstore/book[(@price < 15.00 or
@genre contains("autobiography")) and title contains("quiet AND strength")]''
') = 1

Example 22: Combined search of XML attributes and elements with a single predicate

Namespace considerations

IBM OmniFind provides support that allows XML searches to be restricted to a specific namespace.

On search requests, namespace scoping can be applied to either elements or attributes. Namespace

scoping is accomplished by defining namespaces at the beginning of the XML search string.

consider an XML document containing namespace references to better understand the namespace

search support. The XML document in Example 23 contains two different namespaces to ensure

correct interpretation of the body XML tag which is used in two different ways within the document.

Each of the namespaces within this XML document is described with a long Uniform Resource

Identifier (URI) name and a short qualified name (QName). The QNames of html and health are

useful as shorthand for the namespace of each element reference.

Exploring the IBM OmniFind Text Search Server

26

<html:html xmlns:html="http://w3.org/TR/xhtml1/">
 <html:body>
 <html:p>Welcome to my Health Resource</html:p>
 </html:body>

 <health:body xmlns:health="http://example.org/health">
 <health:height>6ft</health:height>
 <health:weight>155 lbs</health:weight>
 </health:body>
</html:html>

Example 23: XML document with namespace references

Example 24 shows the XML search syntax that can perform namespace specific searches on this

example XML document. The search string begins with two declarations to address the two different

namespaces referenced within the XML document. The first namespace declaration uses the same

QName value(html) as the document and the second declaration uses a different QName value(info).

The QName values specified in the XML search string are not required to match the QName values

used in the XML document. This flexibility can be used to simplify the search string by using a shorter

QName. The path (/html:html/info:body/info:weight) within the XML search string references the

QName for both namespaces because the body element within the health namespace is a

descendant of the html root element which has a different namespace. This example XML search

string directs the text search engine to find an XML document with a root element named html within

the html namespace that has a child element named /body/weight within the health namespace with a

string value matching 155 lbs.

SELECT id FROM mytable
WHERE CONTAINS (xml_column,
'@xmlxp:''declare namespace html="http://w3.org/TR/xhtml1/";
declare namespace info = "http://example.org/health";
/html:html/info:body/info:weight[. contains("155 lbs")]'' ') = 1

Example 24: XML namespace search

Additional XML search considerations

When specifying XML tag and attributes on search requests, you need to know how OmniFind Text

Search Server processes XML tags and attributes during the indexing process. First, the OmniFind

server does not normalize the case of the XML tags during the indexing process. Thus, the case of

the XML tags is significant when coding a search request.

Exploring the IBM OmniFind Text Search Server

27

Searching with synonyms

As mentioned earlier in this paper, the OmniFind search server lets users supply synonyms to augment

the linguistic-search capabilities of the text-search engine. Synonym

As an example, consider the name changes to the computing platform that was originally known as an

IBM AS/400 system. If you developed and sold application software for this computing platform, there is a

good chance that you have product brochures, web pages and fact sheets that still reference the older

platform names instead of the latest product name. By supplying a synonym file like the one found in

Example 25, all of your product searches can be performed with a single search string of 'IBM i'.

OmniFind Text Search Server returns matches when it discovers any of the registered synonyms for IBM i

in the target search text. For instance, a match is returned for the text string, "Distribution software for

AS/400, iSeries, and System i", even though it contains no references to the latest name of IBM i.

<?xml version="1.0" encoding="UTF-8"?>
<synonymgroups version="1.0">
<synonymgroup>
<synonym>AS/400</synonym>
<synonym>AS 400</synonym>
<synonym>iSeries</synonym>
<synonym>System i</synonym>
<synonym>IBM i</synonym>
</synonymgroup>
</synonymgroups>

Example 25: A synonym file, mysns.xml

Creating a synonym file is the first step in the process of enabling the OmniFind search engine to refer to

user-defined synonyms. As Example 25 shows, user synonyms are supplied in an XML file. This sample

file contains a single group of synonyms, but multiple synonym groups can be included in a synonym file.

The synonym value of 'AS 400' must be included for this example to work correctly because punctuation

characters (/) are currently not supported in the synonym-dictionary files.

After a synonym file is created, you must associate the file with a text index by using a synonym tool. You

can associate a synonym file with more than one text index. The synonym tool itself is actually a shell

script named synonymTool.sh. As a shell script, the synonym tool will need to be invoked from the Qshell

command line (STRQSH) or with the QSH CL command.

The synonym file association step must be performed after the initial update or build of the text index.

When the synonym file association occurs before the initial population of the text index, the synonym file

association is lost during the build processing. This also means that the synonym file association will be

lost each time the text index is completely rebuilt using the SYSTS_REPRIMEINDEX stored procedure.

The synonym file itself is not deleted when the association is lost. Thus, the synonym file association step

will have to be re-executed each time the association is lost.

Before using the synonym tool, you must collect several pieces of information that are required as parameters.

The tool requires the name of the text index collection and the file path of the text-search server. The easiest

way to retrieve this information is by querying the text index database catalogs in QSYS2.

The file path for the text-search server is stored in the SERVERPATH column in the SYSTEXTSERVERS
catalog table. Assume that the path value stored in the SERVERPATH column is
'/QOpenSys/QIBM/ProdData/TextSearch/server1/bin/'. The collection name can be found in the
SYSTEXTINDEXES catalog table. The collection is the IFS directory created by the OmniFind server to

Exploring the IBM OmniFind Text Search Server

28

store the contents of the text index. The SELECT statement in Example 26 returns the name of the
collection (IFS directory) for the resumes_index text index created in Example 3: Sample text index
creation

. The collection name for the example RESUMES_INDEX is 0_2_15_2009_06_17_13_59_25_386602.

SELECT collectionname FROM qsys2.systextindexes
WHERE indexschema='MYSCHEMA' AND indexname = 'RESUMES_INDEX'

Example 26: Catalog query for collection name

With the two pieces of required information in hand, you can build the command string for the synonym

tool. Example 27 contains an example invocation of the synonym tool to associate the mysyns.xml

synonym file with the resumes_index text index from Example 3. Right away, you can see that the server

file-path value is used at the start of the command string to identify the location of the synonym tool file

(synonymTool.sh). The importSynonym argument denotes that the invoker wants to associate or add the

synonym file to the text index. The synonymFile command argument identifies the location of the

synonym xml file. The synonym file can reside in any IFS directory. The collectionName parameter

identifies the name of the IFS directory (0_2_15_2009_06_17_13_59_25_386602) that contains the

content of the text-index structure. The replace parameter supports two values. The true value used in

this example replaces the text index's synonym dictionary with the contents of the specified synonym file.

If you specify a value of '-replace false', the contents of the synonym file are appended to the existing

synonym dictionary. The append option enables you to add parameters to an existing text index and

synonym dictionary over time. The final parameter is the absolute file path for the text server's

configuration directory. You can construct this value by taking the server path value and replacing the /bin

subdirectory with a reference to the /config subdirectory.

/QOpenSys/QIBM/ProdData/TextSearch/server1/bin/synonymTool.sh
 importSynonym
 -synonymFile /QOpenSys/QIBM/ProdData/TextSearch/mysyns.xml
 -collectionName 0_2_15_2009_06_17_13_59_25_386602
 -replace true
 -configPath /QOpenSys/QIBM/ProdData/TextSearch/server1/config

Example 27: Sample synonym tool command

You must run the synonym tool command string in Example 27 from the IBM i Qshell command interface.

If it is a requirement to perform setup from a CL program, you can run the synonym tool command string

with the QSH CL command, as shown in Example 28.

QSH
CMD('/QOpenSys/QIBM/ProdData/TextSearch/server1/bin/synonymTool.sh
 importSynonym
 -synonymFile /QOpenSys/QIBM/ProdData/TextSearch/mysyns.xml
 -collectionName 0_2_15_2009_06_17_13_59_25_386602
 -replace true
 -configPath /QOpenSys/QIBM/ProdData/TextSearch/server1/config')

Example 28: CL command invocation of synonym tool

After the synonym import request completes, the only remaining step is to specify the SYNONYM search

option when coding up search requests with the CONTAINS and SCORE function. Assume that the

human resources department needs to search the resumes that are indexed with a text index in Example

3 to find applicants with IBM i systems experience. Instead of coding a separate query or a separate

search predicate for each legacy name of IBM i, you can simply code the single query shown in Example

29 with a single search predicate. This query finds any resume that contains the term IBM i or its

Exploring the IBM OmniFind Text Search Server

29

synonyms (AS/400, iSeries, System i) because the SYNONYM search option is specified and a synonym

dictionary has been added to the text index. If the 'SYNONYM=ON' option is not supplied, the query only

matches those resumes containing IBM i references.

SELECT applicant_name, applicant_number FROM myschema.resumes
WHERE CONTAINS(applicant_resume,'IBM i','SYNONYM=ON') = 1

Example 29: Search example with synonyms

Exploring the IBM OmniFind Text Search Server

30

Searching external object collection

As mentioned earlier in this paper, the OmniFind search server lets users supply synonyms to augment

the linguistic-search capabilities of the text-search engine. Synonym-dictionary files can be useful when

you want OmniFind Text Search Server to recognize synonyms that are unique to your industry or

business.

Searches of a text search collection are accomplished using the SEARCH stored procedure. This
procedure provides similar search capabilities to the CONTAINS function.

CALL TEXTCOLL1.SEARCH('ACME orders');

Example 30: Search external objects in text collection

There are multiple versions of the SEARCH stored procedure. The only required parameter is the first

parameter, which is used to input the search string. The optional second parameter supports the input of

search options such as changing the language or activating synonym searches. One version of the
SEARCH procedures supports a third parameteran output parameter that the returns a count of the

number of objects that match the specified search string. Additional details on the search string and

search options can be found in the OmniFind documentation.

The example search request above produces the result set contained in Figure 6. From the contents of

this result set, you can see that there are two external objects matching the specified search criteria of

'ACME Orders'. The OBJTYPE and OBJATTR columns show that two matching objects were IFS stream

files and the other object a spool file. The CONTAINING_OBJECT_LIB and

CONTAINING_OBJECT_NAME columns are only set for the spool file object and source file member

objects.

Figure 6: Search collection procedure output

The OBJECTINFOR column returns an XML value containing the IFS path details on the object

containing the matching text. Notice that these XML values do not contain the matching text. The

OBJECTINFOR XML value only returns information to help you locate the object that contains the

matching text. If an application must programmatically access the contents of these objects, it must use

XML parsers or other tools to extract the necessary information from the OBJECTINFOR XML values.

The final column in the SEARCH result set is the SCORE column. The SCORE column returns a value

between 0 and 1 indicating how closely the text in the object matched the specified search string. Higher

values indicate the best match; conversely, values close to zero indicate a weak match. As you can see

in Figure 3, the result set is ordered by the SCORE column, so the first object in the result set will always

contain the text with the best match of the specified search criteria.

Exploring the IBM OmniFind Text Search Server

31

Summary
Hopefully, you now have a good understanding of how the advanced, high-speed linguistic features of the

OmniFind product can be leveraged by your application software to deliver additional value to your users.

The extreme flexibility of OmniFind to index and search data in multiple formats whether it is stored inside

or outside of Db2 for i provides many paths for extracting business value out of text data. In addition, the

SQL-based search interfaces enable you to integrate the OmniFind search capabilities into a wide array

of languages and interfaces from RPG to Java to Db2 Web Query. The possibilities are almost endless.

You can find additional references regarding the OmniFind product in the Resources section.

Exploring the IBM OmniFind Text Search Server

32

Resources
These Web sites provide useful references to supplement the information contained in this document:

 IBM OmniFind Text Search Server documentation

ibm.biz/db2iBooks

 IBM OmniFind Text Search Server product page

ibm.com/support/pages/omnifind-ibm-i

 Article: Integrating OmniFind with Db2 Web Query

https://www.mcpressonline.com/analytics-cognitive/db2/omnifind-part-ii-integrating-omnifind-text-

search-server-with-db2-web-query

 Db2 for i white papers

ibm.biz/db2iPapers

 IBM Redbooks® - Db2 for i

ibm.biz/db2iRedbooks

 Db2 for i Blog

Db2IBMi.blogspot.com

About the author
Kent Milligan is a Senior Db2 for i Consultant in the IBM Lab Services Power Systems Delivery Practice.

 Kent has over 25 years of experience as a Db2 for IBM i consultant and developer working out of the

IBM Rochester lab. Prior to re-joining the Db2 for i Lab Services practice in 2020, Kent spent 5 years

working on healthcare solutions powered by IBM Watson technologies. Kent is a sought-after speaker

and author on Db2 for i & SQL topics. You can reach Kent at kmill@us.ibm.com or at his blog:

Db2IBMi.blogspot.com.

Exploring the IBM OmniFind Text Search Server

33

Trademarks and special notices
© Copyright IBM Corporation 2022.

References in this document to IBM products or services do not imply that IBM intends to make them

available in every country.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business

Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked

terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these

symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law trademarks in other countries. A

current list of IBM trademarks is available on the Web at "Copyright and trademark information" at

www.ibm.com/legal/copytrade.shtml.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM

products and the results they may have achieved. Actual environmental costs and performance

characteristics may vary by customer.

Information concerning non-IBM products was obtained from a supplier of these products, published

announcement material, or other publicly available sources and does not constitute an endorsement of

such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly

available information, including vendor announcements and vendor worldwide homepages. IBM has not

tested these products and cannot confirm the accuracy of performance, capability, or any other claims

related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the

supplier of those products.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled

environment. The actual throughput or performance that any user will experience will vary depending

upon considerations such as the amount of multiprogramming in the user's job stream, the I/O

configuration, the storage configuration, and the workload processed. Therefore, no assurance can be

given that an individual user will achieve throughput or performance improvements equivalent to the

ratios stated here.

Any references in this information to non-IBM websites are provided for convenience only and do not in

any manner serve as an endorsement of those websites. The materials at those websites are not part of

the materials for this IBM product and use of those websites is at your own risk.

